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Linked cluster expansions are generalized from an infinite to a finite volume. 
They are performed to 20th order in the expansion parameter to approach the 
critical region from the symmetric phase. A new criterion is proposed to dis- 
tinguish first- from second-order transitions within a finite-size scaling analysis. 
The criterion applies also to other methods for investigating the phase structure, 
such as Monte Carlo simulations. Our computational tools are illustrated with 
the example of scalar O(N) models with four- and six-point couplings for N = 1 
and N = 4  in three dimensions. It is shown how to localize the tricritical line in 
these models. We indicate some further applications of our methods to the 
electroweak transition as well as to models for superconductivity. 
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1. I N T R O D U C T I O N  

The phase structure of models for strong and electroweak interactions has 
been a topic of intensive research in the past. In spite of numerous 
investigations some central questions are still open. To these belong the 
nature of the chiral/deconfinement transition in QCD for physical values of 
the current quark masses and the strength of the electroweak transition for 
the physical (so far unknown) Higgs mass. In both realms one has to 
account for nonperturbative coupling regions. Thus it is natural to choose 
the lattice regularized version of these theories to study their phase struc- 
ture. Most applications are performed with Monte Carlo simulations, 
which are an appropriate tool to study the critical region. Monte Carlo 
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simulations are restricted to a finite volume. Thorough extrapolations to 
the infinite-volume limit from a finite-size scaling analysis are in general 
expensive and sometimes impracticable for lattice sizes which are realistic 
for QCD or for the standard model. ~1 

Convergent expansions such as linked cluster, high-temperature, or 
hopping parameter expansions (HPEs) provide an analytic alternative to 
Monte Carlo simulations. They may also serve as a convenient supplement 
to numerical calculations. Originally they were developed in the hffhTite 
volume. In contrast to generic perturbation theory about noninteracting 
fields, HPEs are convergent power series expansions about completely dis- 
ordered lattice systems. The expansion parameter K is the coefficient of the 
(pair) interaction term. Under certain conditions their convergence radius 
can be directly related to the location of the physical singularity. Hence, 
similarly to Monte Carlo simulations, HPEs can be applied to the phase 
transition (critical) region if the order in the hopping parameter K is just 
high enough. Thus the transition region is accessible from the high- 
temperature (symmetric) phase. 

Hopping parameter expansions have a long tradition in statistical 
physics (see refs. 2 ~ ,  and references therein). Their generalization and 
application to particle physics were pioneered by Lfischer and Weisz, ~5t 
who studied a lattice q54-theory close to its continuum limit in four dimen- 
sions. I6"71 They were the first to perform such expansions by convenient 
algorithms with the aid of computers. In this way they succeeded to 
increase the highest available order in t~" to 14 and generalized previous 
work to arbitrary values of the bare quartic coupling. 

Recently, the HPE has been generalized to field theories at finite tem- 
peratureJ ~ The generalization is twofold. First, one has to implement a 
toroidal symmetry in one direction of finite extension, say L~. In this con- 
text the temperature T is given by T--L~7 ~ in lattice units. Second, the 
highest computed order in the expansion parameter has to be increased, 
because the toroidal (temperature) effect on the critical coupling is rather 
small. Typically, the critical hopping parameter K,. changes only by a few 
percent even on a 4 • ~3  lattice compared to the 00 4 lattice. The graphs of 
the expansion can only "feel the temperature" if they are able to wind 
around the torus in the temperature direction. In general, the largest 
possible winding number should be larger than one to induce a measurable 
effect. In ref. 9 the 18th order has been used to determine the critical 
behavior of the finite-temperature (~4 models with O(N) symmetry. 
Meanwhile, the 20th order of this expansion is available for two-point 
susceptibilitites, see below. 

In this paper we extend the HPE to a finite volume, i.e., to a lattice 
with toroidal symmetry in all directions. We propose criteria to distinguish 
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first- from second-order transitions (and crossover phenomena) both in an 
infinite and in a finite volume. It is the fate of power series expansions that 
one cannot work at the singularity K,., one can only come close to i t - - the 
closer, the higher the order in the expansion. Thus we need a criterion that 
works slightly below ~',.. As such a criterion we propose a so-called 
monotony criterion which is based on the specific volume dependence of 
truncated correlation functions close to, but not at the transition point. 
The criterion includes both order parameter susceptibilities and other 
singular response functions such as the specific heat. Decrease or increase 
with the volume identifies first- or second-order transitions, respectively. 
Although the monotony criterion has been developed in the fi'amework of 
HPEs, it is not restricted to this case. It can be used in other methods as 
well, in particular in Monte Carlo simulations. 

As a second application of the HPE in a finite volume we calculate an 
effective potential up to 16th order in the hopping parameter. The shape of 
the effective potential further characterizes the type of transition. The 
coexistence of distinct minima at the critical point provides another 
possibility to calculate K,. in a finite volume. 

The criteria will be applied to scalar O(N) models with #4 and ~6 self- 
interactions in three dimensions. These models allow for various first- and 
second-order transition regions in the bare coupling constant space. For 
fixed couplings the phase transitions will be considered as a function of K. 
The parameter K may be identified with an inverse temperature lIT of a 
classical system with the same action in three dimensions. Thus in our 
applications HPEs are high-temperature expansions; sometimes we will 
replace lc,. by T,7 t. Since the HPEs are performed for the free energy and 
connected correlations, they are linked cluster expansions. In connection 
with a field theory in four spacetime dimensions the three-dimensional 
model may be considered as an effective description of the four-dimensional 
model at finite temperature, arising in a process of dimensional reduction. 
In a four-dimensional theory at finite temperature one should distinguish 
between K and T t. 

The scalar O(N) models contain a number of interesting special cases. 
If the four- and six-point couplings are sent to infinity in an approriate 
way, we obtain O(N) models with random site dilution, i.e., Heisenberg 
models with additional occupation number variables, associated with 
the lattice sites; for N =  1 we have a diluted Ising model (cf., e.g., ref. 14). 
The case of N =  4 and pure quartic self-interaction is assumed to share the 
universality class with QCD in the limit of two massless flavors. It also 
corresponds to the scalar sector of the electroweak standard model. 
A ~4 + ~*-theory exhibits a tricritical point (line) for a fixed (varying) six- 
point coupling. Such a tricritical point is observed in a liquid mixture of 
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3He/4He. Recently it has been also proposed as candidate for representing 
the universality class of tricritical QCD ~t~ t~ (tricritical QCD means QCD 
with vanishing up and down quark masses and a strange quark mass which 
takes a critical value, at which the chiral transition changes its order). We 
indicate how to localize the tricritical line in a 4 4 +  ~6-theory with our 
methods. 

The outline of the paper is as follows. In Section 2.1 we summarize the 
main results for HPEs from ref. 8. It basically serves to fix the notation. We 
then extend the HPE in an infinite volume to a graphical expansion in a 
finite volume (Section 2.2). In Section 3 we give two criteria to distinguish 
first- from second-order transitions: a precise formulation of the monotony 
criterion (Section 3.1), and an effective potential evaluated in the H P E  in 
a finite volume (Section 3.2). In Section 4 we apply these criteria to three- 
dimensional scalar O(N) models with renormalizable interactions. To get a 
first estimate on the phase structure in bare coupling parameter space, we 
study the large-coupling limit by a saddle-point integration. Often this limit 
is the only coupling range of scalar O(N) models that is studied in the 
literature. An estimate for the location at finite couplings is obtained from 
a hopping-mean-field analysis. This approximation amounts to a tree-level 
evaluation of the HPE (Section 4.1). After this preliminary study of the 
phase structure we present a more detailed investigation by means of the 
HPE for arbitrary finite couplings. In the infinite-volume limit, plateaus of 
critical exponents as obtained from the linked cluster series are proposed as 
criteria to identify the various universality classes of the critical region of 
the theory (Section 4.2). In Section 4.3 we discuss the finite-volume 
behavior of various quantities. The shift in volume of the critical coupling 
x,., defined here as the radius of convergence, is compared to the scaling 
behavior which is expected for the shift of the maximum of the order 
parameter susceptibility. The monotony criterion and the effective potential 
are evaluated for points both in the first- and second-order coupling region. 
Finally we show how to locate the tricritical line. In Section 5 we sum- 
marize our results and give the outlook for further physical applications. 

The main emphasis of the paper lies in an explanation of the method 
rather than a list of results obtained in special cases of O(N) models. 

2. H O P P I N G  P A R A M E T E R  E X P A N S I O N S  FOR THE 
CRIT ICAL REGION 

2.1. General  F r a m e w o r k  

Linked cluster expansions provide a convenient tool for both numeri- 
cal and analytic studies of lattice field theories; The typical expansion 
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parameters are the coupling strengths between fields at different lattice 
sites. ~2'3) In contrast to saddle-point expansions, which are at most 
asymptotically convergent, series resulting from HPE are absolutely con- 
vergent for sufficiently small couplings. 1~2"~3' In this sense they can be 
viewed as generalized high-temperature expansions. If in addition the sign 
of the susceptibility series is uniform, the radius of convergence identifies 
the phase transition, i.e., the critical temperature. 

In order to extract quantitative information on the critical behavior 
one has to get sufficiently close to the critical point. The price to be paid 
is a computation to high orders. The realization of such expansions by con- 
venient algorithms with the aid of computers has been pioneered by 
Lfischer and Weisz. 's' Recently, progress in various ways has been made to 
extend the length of strong-coupling series) 8' ts. t6, Normally, these expan- 
sions are set up in an infinite volume. In ref. 8 the techniques have been 
further developed in such a way that the expansions can be reliably applied 
to lattices of nontrivial topology. In particular, it turned out that the 
highest order in the expansion had to be further increased for measuring 
effects from topology. The improved techniques have been applied to 
scalar O(N) models with quartic interaction on four-dimensional finite- 
temperature lattices, c9' The critical exponents could be shown to agree with 
the critical indices of the corresponding (dimensionally reduced) three- 
dimensional models. 

In the following we summarize the main formulas from refs. 5 and 8 
to fix the notation and to set up the expansion scheme that later will be 
generalized to a finite volume. We consider a D-dimensional hypercubic 
lattice A = X,.~ ~ 7//L i, with L i e  N an even number or with Li = oo. Peri- 
odic boundary conditions are imposed for each finite L ,  The restriction to 
even L; leads to a considerable reduction of the number of contributing 
graphs because it implies that each loop must have an even number of 
lines. The class of models we discuss are described by the partition function 

Z(Z v)=  f H dN~(x)exp E E 
. x  ~ . t  x ~ y ~ .  I a .  h = I 

r v,,i,(x, y) r 

xexp - ~ ( ~ ( x ) ) +  ~ ~ J.(x)~, , (x)  
.x" A" ~ , ' |  t t  = I 

(l) 

where ~ denotes a real, N-component scalar field, J are external sources, 
and v,,~,(x, y) denote the hopping couplings. The ultralocal part of the 
action ~q, which depends only on one lattice site, is chosen to be O(N)- 
invariant. It should guarantee the stability of the partition function (1) for 
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sufficiently small v(x. y). T h r o u g h o u t  this paper  we consider  as an example  
the act ion of  a q~4 + r 

~(qs) = qs 2 + 2(r 2 _ 1 )2 + a( r _ 1 )3 (2) 

which exhibits a phase structure with bo th  first- and second-order  tran- 
sitions. We emphasize,  however,  that  the general  techniques are not 
restricted to this case. 

Fields at different lattice sites interact  with the hopp ing  coupl ing 
v,,~,(x, y). For  the case of  nearest  ne ighbor  interactions,  it reduces to 

~2~d,,. ~,, x, y nearest  ne ighbor  
v,,~,(x, y ) =  (0 ,  otherwise (3) 

where K is the so-called hopp ing  parameter .  The nearest  ne ighbor  p roper ty  
should be unders tood modu lo  the torus lengths. Hencefor th  we consider  
only nearest  ne ighbor  interactions. 

The  generat ing functional of  connected correlat ion functions is given by 

W(J, v) = In Z(J,  v) 

W <2''' tx  x2, , )= ( r  (4) 
~t  I . . . l t 2 t j ~ "  I ~ ' " ~  

c32" v) J= 
-OJ , , , ( x , ) . .  OJ,, (x , , )  W(J, 

�9 2 ,  - 0 

In the following a major  role is played by the connected two-point  function and 
the corresponding susceptibility ;C2 and moments /~2 ,  defined according to 

~,,.,,z-, = Z  (r r 
, v  

I 
f ) -  I 

% +,,,o,>, 
(5) 

In field theory, it is convenient  to define the renormal ized coupl ing con- 
stants via the vertex functional 

F(M)  = W(J) - ~ J (x ) .  M(x)  

1 
= y '  (2n) I ~. j , 2,, . . ,,2,3.,/ .. j ,..., xz , , )m, ,~(x , ) . . .m,~(x2 , , )  

a w  
M,,(x) OJ,,(x)' a = I ..... n 

(6) 
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The s tandard  definitions of  the renormal ized mass  mR (as inverse correla-  
t ion length) and the wave function renormal iza t ion  constant  ZR are 

1 
p,2}~ _ - ( m ~  + p'- ,a,,IJ,--p} = ~ +O(p4)){Ja.t, a s  p- -*0  (7} 

where the tilde denotes  the Four ier  t ransform.  Equa t ion  (7) implies that  

.} 

m ~ = 2 D  Z2, Z ~ = 2 D  Z--~;- (8) 
112 112 

The critical exponents  7, v, q are defined by the leading singular behavior  
at the critical point  ~',., 

In Z2 "" - 7  In(h-, .-  h') 
i 

In m~ ~- 2v ln(h ' , . -  I,') as h ,~ K,. (9) 

In Z1r "" vq in (K, . -  h') 

such that  vr/= 2v - 7. 
If  the interact ion par t  (3) of  the act ion is switched off, i.e., v = 0 ,  

S(~ ,  v = O ) = Z . , . ~ ( ~ ( x ) ) ,  the part i t ion function factorizes, and in turn 
W(J, v = 0 ) =  Y~.,. l,~'(J(x)). In part icular ,  

( ~';-"- &_,,(a, ..... a,_,,} f o r  x ,  = x ,  = . . . . .  ~',,, 
,,,{2,,, , . .  x2,,) = { { 2 n -  1)!, vv ,,, ..... ~,~-' t ..... " (10) 

otherwise 

with 

0 2 n  J 
O~,, = Oj~,---~, ff ' (J)  =o (11) 

and C2,, totally symmetr ic  coefficients in ai, i =  1 ..... 2n. 
In practice, the vertex couplings [~,, are obta ined from the relation 

1 o,. , ,, 

n > ~  I 

[ I~ = I n  1 +  2 ~ v 2 . ( J  ) 
n > ~  I 

(12) 
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with 

02it = I dN~) (pin exp( - g(r (13) 
dUr exp( -- g(r 

or, alternatively, recursively from the Dyson-Schwinger equations. 
The linked cluster expansion for W is the Taylor expansion with 

respect to v(x, y) about this decoupled case, 

W(J,v)=(exp ~ ~ v,,,,(x, y) oo,,i,~x ) W(J,O) = ~ (14) 
..... , .  ,,. i, , Y )  

The corresponding expansions of correlation functions are obtained from 
(14) by (4). Susceptibilities become power series in ~ with a nonvanishing 
radius of convergence. 

The management of such an expansion is conveniently done by means 
of a graph-theoretic device. Correlation functions are represented as a sum 
over equivalence classes of graphs, each class being endowed with an 
appropriate weight. In order to make high orders in the expansion feasible 
it is necessary to introduce more restricted subclasses of graphs such as 
one-particle irreducible (1PI) graphs, one-vertex irreducible graphs, and 
renormalized moments. The correlations are then represented in terms of 
the latter two. For further details we refer to refs. 5 and 8. 

The total weight of each graph consists of a rational weight factor 
decomposing into a product of its (inverse) symmetry number, the O(N)- 
group factor, and the lattice embedding number, and a product of O2,,'s of 
Eq. (11). It is only the lattice embedding factor that depends on the 
topology of the particular lattice which is involved. In the next section we 
outline the modifications of the embedding numbers due to a finite volume. 
Explicit examples of series for Z2 are given in Appendix B. 

2.2. Extension to the Torus 

Let us consider a correlation function, such as in (5), on a D-dimen- 
sional lattice of size Lo •  x ... x L , _  ~ with periodic boundary condi- 
tions. Except for a trivial volume factor, the embedding number 
Ir(Lo ..... LI~_ ~) of a connected graph F counts the number of possible 
ways F can be embedded on the lattice. Embedding means a mapping of 
every vertex v of F onto a lattice site x(v) = (xo ..... x , _  ~)(v) consistent with 
the topology of F. Every two vertices have to be mapped to nearest 
neighbor lattice sites if they are neighbored vertices of F, i.e., if they are 
connected by at least one line. Self-lines do not exist. Otherwise the linked 
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cluster expansion does not impose any exclusion constraints. In particular, 
an arbitrary number  of vertices can occupy the same lattice site. This kind 
of lattice embedding is sometimes called a "free embedding." 

It is most convenient to rearrange the computat ion of embedding 
numbers in terms of random walks. ~5~ Toward this end, the set of vertices 
of F is divided into the disjoint sets of internal 2-vertices and their comple- 
ment. A vertex v is called an internal 2-vertex if it has no external line 
attached and there are precisely two neighbored vertices of v in F. All 
internal 2-vertices can be reorganized into so-called 2-chains between the 
remaining vertices in an obvious way. Every 2-chain c has an initial vertex 
i,. and a final vertex J~., possibly identical, and it has a length I,. >1 1, where 
/ , . -  1 denotes the number  of internal 2-vertices of c. Here, for convenience, 
we include l,. = 1, in which case c just implies the nearest neighbor con- 
straint on i,. and f,.. On the lattice infinite in all directions the embedding 
number  is then written as 

I r ( ~ " ) =  ~ ' I - [  ,|/-,../~ f _tJ, ~ "  . v l " ,  ~ x  L ) " ~ O  ) 

(.x'l t '  D t" 

(15) 

The sum runs over all placements of vertices v that are not internal 
2-vertices, with x(vo) kept fixed for some arbitrary vertex Vo to account for 
the trivial entropy factor. The product runs over all 2-chains of F. Here 
o'tr!i.~ , .(~ ~ denotes the number of free random walks of length l from 
lattice site x to y. Closed analytic expressions can be given for JV!i.~ .,.. We 
notice that 

D - - I  

oU!(.~.,.(~~ on ly i f  l - -  ~ Ix,-y,l~O even (16) 
i = 0 

In the finite volume with periodic boundary conditions the topology 
modifies (15) at two places. First, the sites x(v) are now restricted to a cube 
of size Lo x L, x ...  • L/~_ ~, and the nearest neighbor constraint, implicit 
in every 2-chain c of length l,. = 1, holds modulo the torus lengths. Second, 
the number  of random walks ,/-/.. o . ( ~ o )  is replaced by 

�9 U I , .  I, r  L o -  ) = ~, 
.v ~ . r  ~ ~ ( }  ~ ' " ~  I 

It{I "''*" P D  - I E ~- 

~/.#. t~ L(oo o ) (17)  
.x- ~ y q -  i t  �9 

where 

D - I  

/~ .L= ~ [. l iL i 
i = 0  



764 Meyer-Ortmanns and Reisz 

The sum in (17) accounts for additional random walks which arise from 
the possible winding around the torus. Due to (16), the sum in (17) is 
finite. 

3. F IN ITE-S IZE S C A L I N G  A N A L Y S I S  W I T H  HPE 

In this section we discuss two criteria in the finite volume to determine 
the order of a phase transition. Although the criteria are developed for 
linked cluster expansions, their application is not restricted to series 
representations. 

The question arises of why one is interested in linked cluster expansion 
on a torus, since the expansion is more easily obtained in the infinite 
volume. Data on the critical region such as the critical temperature are 
successfully extracted from the asymptotic high-order behavior of the coef- 
ficients of susceptibility series. The typical precision here is within 4-5 
digits or even better. 

In general the symmetry of the model alone does not determine the 
properties of a transition. For  instance, there may be more than one 
universality class, corresponding to different ranges in the space of bare 
actions. As was pointed out in ref. 9, one should look for plateaus of 
critical exponents to distinguish between them. Problems arise close to the 
boundary of two such domains. "Smearing effects" occur due to the trun- 
cation of the series. Both universality domains will influence the coef- 
f ic ients- the  more, the lower the order. This does not pose a problem, as 
long as the domains are sufficiently large and the boundary of the domains 
extends over a negligible coupling range. 

Whereas the location of the phase transition can be determined very 
precisely from the infinite-volume series, its order is usually a more 
intricate question, in particular, if the transition is weakly first order. 
Criteria to distinguish first- and second-order transitions can be con- 
veniently worked out in the finite volume. Thus, in our case, the finite-size 
effects will be utilized rather than suppressed as artifacts of the finite 
volume. 

A finite-size scaling analysis for second-order transitions can be based 
on a renormalization group approach; see, e.g., ref. 17. The inverse linear 
size L-~ of the system is put on an equal footing with other scaling fields 
such as the temperature or an external field. The analysis results in a 
prediction of the leading scaling behavior of a susceptibility X about the 
critical temperature T,. according to 

Z(t ,  L )  " Itl ~' P ( L / ~ _ ~ ( t ) )  (18) 
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for sufficiently small t and large L, where t is the reduced temperature 
(T -T , . ) /T , .  and 7 is the critical exponent characterizing the divergence at 
t = O. The amplitude P depends only on L measured in units of the infinite- 
volume correlation length ~ .  Further properties of P ensure that at the 
temperature T,.(L) where the susceptibility has its maximum the height of 
this peak scales according to z(T,.(L), L ) ~ - L  ~'/'~, the width a(L) of the 
critical region shrinks with L- '"" ,  and T,.(L) is shifted compared to T~ 
according to T,.(L)-7",.  - L - ' / " .  Here v denotes the critical exponent of 
the correlation length. 

For a generic first-order transition an analogous derivation of the 
scaling behavior from first principles is missing in general, The ratio 
L/~.~_ (t) is no longer a distinguished scaling variable. In the thermodynamic 
limit, as T approaches T,., the correlation stays finite and model dependent. 
The rounding and shifting of thermodynamic singularities are normally 
described in a phenomenological approach ('~1 which is based on Monte 
Carlo results. The height of the peak of the susceptibility at T,.(L) is 
expected to scale with L n, and both the width o(L) and the shift in 
T , . (L ) -  T,. are expected to scale with L -t~ as L ~ oo, where D denotes the 
space(time) dimension. A more fundamental finite-size scaling theory exists 
for a class of spin models that allow for a particular polymer expansion of 
the partition function. (~9~ Whereas the predictions of the finite-size scaling 
of the height of the peak and the width of the scaling region reproduce the 
above-mentioned behaviour, the shift of the location of the peak is derived 
to be T,.(L) - T,. ~- L -2t9. 

It turns out that our series representations in the hopping parameter 
k- for the susceptibilities Z cannot be uniquely extrapolated to the critical a-,. 
(corresponding to T,7 ( as explained in the introduction) to the end that the 
peak and width of X confirm the expected scaling behavior. However, the 
specific behavior of Z close to ~-,. is conclusive enough for distinguishing 
regions of first- and second-order transitions, as we will show below, 
without any need for an extrapolation in K to K,. In addition, the scaling 
of ~c,,(L), defined as the radius of convergence in the finite volume, follows 
the form expected (by analogy) for the shift of the location of the peak 
from ref. 19. The scaling behavior holds for the Z2 model, but also for the 
0 4 +  O6-models with four components, which are not covered by the 
analysis of r'ef. 19; cf. Section 4.3. 

3.1. The  M o n o t o n y  C r i t e r i o n  

For a certain interval of the scaling region, response functions with a 
nonanalytic behavior in the infinite-volume limit show different monotony 
behavior for first- and second-order transitions. Examples of such functions 
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are the specific heat and order parameter susceptibilities. They are increasing 
in volume in a certain neighborhood of T,. for second-order transitions, 
and decreasing for first-order transitions for some range in the scaling 
region, which will be specified below. Since we are not aware of any discus- 
sion in the literature, although the underlying idea is rather simple, we will 
describe the behavior in some detail. For definiteness we fix the notation in 
terms of order parameter susceptibilities. 

In the following it is convenient to write the susceptibilities as a func- 
tion of L and t=-t(L)=_T-T,.(L). Here t(L) measures the temperature 
distance to the location of the maximum of x(T, L) in volume L ~ From 
the standard finite-size scaling analysis one knows that in the infinite 
volume 

X(t+T, . (L) ,L=~)<ov as t--*0 (19) 

for a first-order transition with a possible discontinuity, whereas 

Z ( t + T , . ( L ) , L = c ~ ) ~  Itl ~' (20) 

for a second-order transition with critical exponent },>0. By definition, 
regular contributions to X may be neglected in the scaling region. On the 
other hand, z(T,.(L}, L} diverges in both cases as L approaches infinity. 
More precisely, at T,.(L), Z has a "6-function" or power-law type of 
singularity for a first- or second-order transition in the thermodynamic 
limit, respectively. It is this difference that is responsible for the different 
monotony properties for t :~ 0 in the finite volume. 

If 6 ~ 0 is small, to a given lattice size L,. < oo, not too small (in order 
to satisfy the standard assumptions of the finite-size scaling analysis), one 
can always find a second size L~ with L~> L.~ such that (cf. Fig. 1) 

X(6+T,.(L),L>>.L~)>Z(6+T,.(L,.),L,.) for 2nd order (21) 

X(&+T,.(L),L>IL~)<Z(6+T,.(L,.),L,.) for 1st order (22) 

that is, Z(6+ T,.{L), L) is increasing or decreasing in volume. We notice 
that in (21) and (22) the susceptibilities are measured at fixed distance 
from their respective maxima. The range of ~ where (21) and (22) are sup- 
posed to hold satisfies 

cl a(L)t/{t +,:~ < 161 < c2a(L.,.) (23) 

Here a(L) denotes the width of the critical region in the volume L t}, and 
c~, c2 and e are positive constants, typically with e = 1. Beyond the general 
constraint that both volumes L,. and L/ have to be sufficiently large, in 
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l / L "  ,,~ v ( t, ,,, ) , d ' l  , y 
(t, v2) 

Fig. 1. The (t, v) phme for susceptibilities ;((t, v )>  0 in the vicinity of a phase transition at 
It = 0, t, = 0): t denotes the scaling field, t =  (T-7",.(LJJ/T,.(L). and v is the inverse of some 
power of the volume L" with some x > 0 .  For a first-order transition, Z ( t , v ~ ) > X ( t , v , _ ) ,  
whereas for a second-order transition Z(t, v~)<Z(t,  r~,). For the shaded part no prediction is 
made. 

addition L~ has to be sufficiently larger than L.,., so that a(Lt) is con- 
siderably smaller than a(Ls). We would like to stress that the monotony 
behavior of X does not refer to values of L~ close to L.~. In terms of Fig. 1, 
L,. and L~ are separated by the shaded area, for which we do not make any 
predictions. 3 

In the series representation of;( we can set Lt = or, so that (21) and (22) 
give strong criteria in the whole scaling region where we can use the series. 

In the following we make these statements more precise, in order to 
show that the monotony behavior is neither a pecularity of specific models 
nor an artifact of the series expansion. It is a generic feature of models with 
first- and second-order transitons if the standard assumptions on their 
finite-size scaling behavior apply. Rigorous proofs of these assumptions are 
missing in general, neither do we attempt to give such proofs in the treat- 
ment below. 

Let t denote the scaling field, i.e., t = ( T - T , . ( L ) ) / T , . ( L ) .  Here T,.(L) 
locates the maximum of the susceptibility in the volume L n. Furthermore, 
we set v = L .... with m > 0. The infinite-volume limit is obtained as v ~ 0 
from above.-Equally well, we could have set t = ( T -  T,.)/T,.. If T , . ( L ) -  T,. 
shrinks at least as fast as the width of the critical region, as the standard 
assumptions on finite-size scaling analysis predict, the following statements 
would be left unchanged. 

Accordingly, the resnlts of  Esser et  al. 04~ do not contradict our lemmas. The nonmonotonic  
behavior of  the susceptibility they found may be caused by a choice of L,  too small for the 
regular contributions to X to be really negligible, or by a choice of L / t o o  close to L.~. 

82287:3.-4-20 
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The transition range is given by small t and v. Let 

H 2 := {(t, v)uR2[v>~0} (24) 

denote a half-plane, q / c  H 2 the intersection of an open neighborhood of 
0 ~ R  2 with H 2, and q/*=ql \{O} .  

We discuss the case of a first-order transition first. The typical 
behavior of a susceptibility close to the transition is described by the 
tbllowing definition. 

Def ini t ion 3.1.  For any co>0  we define ~'{'(q/) as the set of real- 
valued continuous functions Z: ql* ~ R with the following properties. 

1. Za  C ' (# /* \{(R,  0)} ), that is, Z is once continuously differentiable 
tbr v # 0 .  

2. For all nonzero t there is v, > 0 such that for all v < [tl/v, 

Ix(t, v)l ~<o) 

3. With appropriate positive constants c, K~, K2, and e we have in 
~'71" for v ~ 0  

Z(0, v) c Ki 
-- - ~ I - ~: 

U U 

a K, ~x(t, v) ---:v- 

It follows from this definition that for small t the numbers v, are 
bounded from below by some positive constant. 

As an example, consider the following typical representation of the 
magnetic susceptibility in the volume Ln: 

z 2 ( T , L ) = c L n  e x p [ - f L 2 t ' ( T -  T , . (L ) )2]+q(T ,L )  (25) 

with c , f > 0  real constants and r/(- ,L) analytic for L < m ,  locally 
uniformly convergent as L ,7 oz [so that q(-, oo) is analytic]. With 
v = L -n,  t = [ T - T , ( L ) ] / T , . ( L ) ,  it is straightforward to show that 

Z(t, v) :=z2(T,  L) 

belongs to ~u,(,(o~) for some co. Furthermore, 1 / v , ~ O  as t ~ 0 .  If 
[ T , . ( L ) - T , I  < d L  .... for some d > 0  and m>~D, the same holds if we put 
t=  ( T -  T,.)/T,. 
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belongs to 
satisfied. 

More generally, every function Z' o?/* ~ R of the form 

Z( t 'v )=l  f ( ~ )  (26) 

~u'('(4/) with appropriate co > 0 if the following conditions are 

la. 2(t,v)~C~('J?i*). 
lb. 2(t, v) together with its (first) partial derivatives are uniformly 

bounded in ~?/*. 

2a. J'~ C~(R) is a nonnegative function with f ( 0 ) >  0. 

2b. lim,._ +~ [xll+':f(x)=O for some e > 0 .  

2c. (4/dx) f(x)  is uniformly bounded on R. 

Any such function has the property that it "approaches 6" locally, i.e., 

f 
c 

lim lim dt z( t, v ) > O 

and is finite. In this case the limits do not commute. An explicit example 
for such a function is 

f(x) = ( c )  ~'2exp( -cx'-), c > 0  

with normalization 

I~ dv f (x )=  1 

After these preliminaries we now state the following volume dependence. 

Lemma 3.1. Let co > O, X ~ ~'~'('4/). There are 6, e > 0, and for every 
t r  there is v , > 0  such that in ~?/* for all w,v,t  with v<6 and 
~,,w< Itl < e v ,  

x(t, v) > Ix(t, w)l 

In particular the lemma holds for w = 0, i.e., 

z(t, v) > Ix(t, 0)1 
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This means that the susceptibility in that part  of the transition region 
where [t[/v<e and v < 6  is larger than in the infinite-volume limit, where 
H 2 ~  0.  

Proof. Let X ~ ~'i '(#l), co > O. Differentiability implies that 

' 0~ v) ,, Z(t, v) =x(O, v) + t fods Z(q, 
= s g  

With appropriate c o, K >  0 we have 

x(o, v) >i co 
O 

and 

I z(q, v) < ~  
V- 

in o?l*. Hence 

Co Itl K 
X(t, v) >~ 

V O 2 

Furthermore, for every t :~ 0 there is v, > 0 such that 

IX(t, w)l ~< ~o 

for all w < Itl/v,. Finally, we choose e = Co/(2K) and 6 = co/(4o~) and get for 
v < 6  and v ,w< It[ <ev 

C o ~ K  c o  
X(t, v) >/ > Ix(t, w)] 

v v 2v 

Thus the lemma follows. | 

Now we come to the second-order transition. In contrast to the first- 
order case, at a second-order transition the order parameter  susceptibility 
can be divergent in the infinite-volume limit as the critical temperature is 
approached. This is described by the following definition. 

Definition 3.2. For any y > 0 we denote by ~(~11) the set of func- 
tions 2:: ~7/* ---, R that are continuous and satisfy the following conditions. 
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1. There are constants d ,  K, e > 0 such that in ~/1" 

Iz(t, 0) - ~ Itl -~'1 ~ g Itl -"+' :  

Furthermore,  with appropriate  v, cg > 0, we have, whenever Itl > vv, 

Z(t, v) >~cgX(t, O) 

2. There are constants q, # > 0 such that for I tl < qv 

Ix(t, v)l < ~ v  -~' 

The specific property for a second-order transition that the singular 
part  of the free energy density behaves as a generalized homogeneous func- 
tion implies for the susceptibility in a volume L ~ a typical form like 

z2(T,L)=IT-T,(L)I-rQ((T--T,.(L))L~'")+q(T,L) (27) 

with some ~,> 0. Here q(., L) has similar analyticity properties as in (25) 
above, v > 0 is the critical exponent of the correlation length 

~~ IT -  T,.I-" (28) 

and Q is continuous and behaves as 

lim Ixl-~' Q(x)=K>0 
, - -o  (29) 

lim Q(x)=C>O 
. v  ~ J r  r Z  

The first equation expresses the absence of a nonanalyticity of ;(2 for finite 
L, the second one its presence in the infinite-volume case. With t =  
I T -  T,.(L) ]/T,.(L), v= L -'/'', and 

X(t, v) :=z2(T,  L) 

we see that )f belongs to ~(~h ')  for some ~,. 
More generally, every function X: q/* ~ R of the form 

; ( ( t ,v)=l  f (~ )+~( t , v )  (30) 

with ~, > 0 belongs to some ~(~?t) if the following conditions are satisfied. 
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1. 2(t, v) ~ C'(~ 

2a. f e C l ( R )  and f ( 0 ) > 0 .  

2b. lim,.~ +.~_ JxJrf(x)  = C for some finite C > 0 .  

Compared to the first-order case (26), the essential difference comes 
from property (2b). 

As an example, 

Z(t, v) = (t'- + v'-) -(,,,/z), 

belongs to the class ~u,,, 

m > 0  

For these functions, we have the following in contrast  to Lemma 3.1. 

Lemma 3.2. Let ), > 0 and Z ~ T~(~_I/). There are constants v, e > 0 
such that for all t, v, w with w~,< Itl <ev,  

Ix(t, v)l <x( t ,  w) 

The inequality is always true if w = 0, i.e., the susceptibility is always 
smaller than in the infinite-volume limit as long as we are in the critical 
region Itl/v < e. 

Proof. Let Z e  ~r(~l/), ) ,>0.  There are numbers ~, @, v > 0  such that 
in ~1" for Itl > w.t, 

x(t, w ) >  ~gx(t, O)> ~ Itl -~' 

Furthermore, there are q, # > 0 such that for Itl < qv 

ix(t, v)l < ,~v  -~' 

We choose e=min (q ,  (@/#)~/r) and get for w.v< Jtl <ev  

I x ( t , v ) l < ~ v  " < ~  ~ < - ~ - X ( t , w ) < x ( t , w )  

This proves the lemma. II 

3.2. The Effective Potential 

Let us briefly discuss another method to determine the nature of  a 
transition that will be of use later on. For  definiteness we come back to the 
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N-component scalar model as described in Section 2. A possible way to 
define an effective potential is by 

V.  V.,r( M )  = - F( M)I  M . . . . .  (31) 

where V denotes the volume and F ( M )  is defined by (6). In the symmetric 
phase and in the infinite-volume limit, Ven has to be convex. In practice, 
the right-hand side of (31) is obtained as an expansion about M =  0. In the 
linked cluster expansion the coefficients can be expressed in terms of 1PI 
susceptibilities Z~, m. They are obtained as series representation in x of the 
truncated susceptibilities by keeping only those graphs that are 1PP 91 (1PI 
graphs are graphs that cannot become disconnected by cutting off one of 
their internal lines). Up to a constant we obtain 

_ _ , ; ( 4  1 1 - -4Dh'z~ PI M 2  - 1 , tpt 
V~,-(M) 2 Z~ ''x 4!" f , ) 4  (M2) 2 

_ tZ_ 

1 1 // ,v, lO(z~"')2~ 6! (Zfr \Z6 ~ j (M2) s + O ( M S )  (32) 
_ X_ 

Any nonconvex shape of V~t r in the infinite-volume limit must be an artifact 
of the approximation scheme. In a finite volume, however, a nonconvex 
shape in the symmetric phase signals a first-order transition, whereas a 
convex shape is compatible with a second-order transition. An estimate of 
the critical coupling is then obtained by a root of the coefficient of M 2 in 
the second-order case, and by degenerate values of Vcn- at the trivial and 
nontrivial minima in the first-order case. In our applications (see Section 4) 
we have calculated the 1PI susceptibilities - ~P~ z2,, up to 1 6 t h o r d e r i n x i n a  
finite volume for n = 1, 2, 3. 

4. APPLICATIONS TO SCALAR O(N) MODELS WITH 
@4 AND (Ps-POINT COUPLINGS 

In this ~ection we apply the methods discussed in the previous sections 
to the three-dimensional O ( N )  symmetric scalar model with N =  1 and 
N- -4 .  The model is described on a lattice A by the partition function 

x E  A x . y  N N  x 

(33) 
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where the first sum of the exponential runs over unordered pairs of nearest 
neighbor lattice sites, and the ultralocal part  g is given by 

,~(~, it, 0") = ~2 + it(tp2 __ 1 )z + a (~2  __ 1 )3 (34) 

with a >  0 or a = 0 and it >/0. In statistical physics this model is known 
under the name Blume-Capel  model/-'z'-3~ In contrast to the pure quartic 
interaction, which only admits second-order transitions, the action (34) 
allows a richer phase structure with regions of first- and second-order 
transitions due to the additional q~6 interaction. The case of i t = 3 a  
corresponds to a pure q~6-theory, whereas it < 3a implies a negative quartic 
coupling. 

4.1. P r e l i m i n a r i e s  

To get a first estimate of the phase structure we consider the case of  
large couplings it and a. For finite coupling constants we invoke a hopping- 
mean-field analysis. 

The Large-Coupling Limit. To study the limit of large couplings, we 
set it = ~a and send a to infinity with ~ and 1," kept finite and fixed. This 
limit is discussed for more general contact terms in Appendix A. The dis- 
cussion is based on a saddle-point integration. As a result we obtain the 
following behavior in dependence on ~. For 0~ > 1 and 0~ < - 3  we obtain 
O(N) Heisenberg models (Ising model for N =  1 ). The range of - 3  < ~ < 1 
leads to complete disordering with no phase transition at any finite h'. The 
cases of ~ = -  1 and ~ =  3 are peculiar. The resulting actions describe 
"diluted" O(N) models, with particular values of the couplings. If the large- 
coupling limit is performed term by term in the H P E  series it can be shown 
that at least for N >/2 the resulting actions again belong to the unversality 
class of O(N) Heisenberg models. 

A Hopping-Mean-Field Analysis. To get a first estimate of the 
phase structure at finite couplings, it is instructive to start with a mean-field 
analysis. Together with the convexity of the exponential and the positivity 
of the measure this ansatz leads to a complete factorization of the partition 
function. The hopping-mean-field estimate for the free energy is then 
derived as follows. Let us define Y by 

exp ,~(H) = f d'V45 exp[ - ~ ( ~ ,  2, a) + H -  ~ ]  



Convergent Series Expansions in  a Finite Volume 775 

and the expectation value ( F )  i./of an observable F according to 

(F(O))n  = e x p [  - I A I  :~(n)] 

•  ( d ' V O ( x ' e x p [ - ~ ( O ' + H ' O ] ) F ( 0 )  

Here IAI denotes the lattice volume and H e  [~u is an auxiliary field. Note 
that .'~ defined in this way agrees with ~ as introduced in Section 2. In 
particular, for every integer n, 

02" .~(H) 
e;,,(x, o)  1,=,, 

[compare to (11)]. For  simplicity, where no confusion can arise, we only 
indicate the dependence on H. We get 

x ,  . t '  N N  11 

x v N N  / H  

=exp[ - IA l  f ( n ) ]  

with 

f(  H) = - ( 2 ( H )  + 6K(Vu.~(H))~- - H . V llA( H) ) 

An upper bound on the true free energy density f is thus given by 

f~< i n f f (H)  (35) 
H 

A vanishing Ho = 0 is always a solution of the corresponding mean-field 
equation 

a.f(Ho) = - a ~ , . ~ ( H o ) [  12x OH:~(Ho) -- Ho] = 0 

where the derivative is in the direction of H, and Ho = 0 is a local minimum 
off ,  if 

9 - -  9 o "~ o 7 J  = O;~x(Ho)[ 1 - 12x Ohx(0) ] > 0 (36) 
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In particular, for small hopping parameter K the model is always in the 
symmetric phase. This form of mean-field analysis is identical to the tree 
level of the hopping parameter expansion. The hopping-mean-field analysis 
has been used, for example, in ref. 24 under the name molecular field 
approximation to investigate the phase structure of the spin-1 Ising model 
and to compare it to 3He-4He mixtures. 

It can easily be shown that the Lebowitz inequality (cf., e.g., refs. 
25, 26) 

3 0. OHx(H)<O for all H > 0  

together with 3 ~ 2 ( H ) >  0 for all H ensures that Ho = 0 is the absolute min- 
imum of f .  The Lebowitz inequality holds in any case for 2 >i 3a. Equality 
in (36) along with 

8~,f(O) > 0 (37) 

locates a second-order phase transition to the spontaneously broken 
phase at 

1 lg.(L a ) -  
12t~(2, a) 

Tricritical po#Tts are identified by an equality in (37) and 

061f(0) > 0 (38) 

i.e., 

~(2, a) = 0 and 56(2, a) < 0 

We notice that these conditions imply a vanishing two- and four-point 
coupling in the effective potential Vctr, Eq. (32), evaluated to tree level in 
the HPE, i.e., in the hopping-mean-field approximation. Thus the criterion 
for tricriticality reduces to the familiar one. If we had used the classical 
potential (34) instead, this would have led to a location of the tricritical 
line in the bare coupling constant space at 2 = 3a. 

In Table I we list some results for the 0(4) model on the location of 
the tricritical line in the (2, a) space for several values of ~. 

The tricritical exponents in hopping-mean-field establish the results of 
the most naive mean-field analysis with the effective potential replaced by 
the classical potential. They are 0t= 1/2, f l=  1/4, 7' = l, 6 = 5, and v = 1/2. 
From the Ginzburg criterion one may expect that the only chance where 
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Table I. Mean-Field Tricritical Line for the 0(4)  Model on the 
Three-Dimensional Hypercubic Lattice" 

777 

1/I.05 128.199 134.609 --0.7245305 
l/I.l 53.040 58.344 --0.6875585 
I/I.2 21.822 26.286 --0.5920738 
1/1.3 13.252 17.228 --0.5193738 
I/1.5 7.315 10.973 --0.4451270 
I/2.0 3.401 6.802 --0.3839411 
I/5.0 0.788 3.941 --0.3407590 
1/10.0 0.344 3.494 -0.3345469 
1/100.0 0.031 3.081 --0.3306763 

--1/10.0 --0.273 2.731 --0.3284753 
-- l/I.I --1.391 1.530 --0.3519023 
--1.0 --1.472 1.472 --0.3581768 
--2.0 --2.948 1.474 --0.5106579 

--3/I.2 --7.561 3.024 --0.6827047 
--3/1.1 --17.678 6.482 --0.7259408 

"The line is defined by t~=0 and 6~<0; 6 is defined by 6= L~/[5(L~)~]. 

a mean-field type of  analysis may  lead to reliable predictions of  the singular 
behavior  in three dimensions is at tricriticality. In fact, the susceptibility 
comes out  as volume independent  along the tricritical line (cf. Section 4.3 
below) when it is determined by the H P E  analysis. A mean-field analysis 
is volume independent  by construction.  

4.2 .  I n f i n i t e - V o l u m e  A n a l y s i s  a t  F i n i t e  C o u p l i n g s  

So far we have studied the phase structure in the large-coupling limit 
and in a mean-field analysis for finite couplings. Next we utilize the linked 
cluster expansions for a more  thorough  study. Susceptibilities are repre- 
sented as convergent  power  series in the hopping  parameter,  such as the 
2n-point functions 

~2,,(K, ~, O')= ~ (2hi (39) at, (2, O) K" 
l~>o 

and similarly for weighted correlations. These series have been computed  to 
20th order  in ~ for n = l ,  to 18th order  for n = 2 ,  and to 16th order  for 
n = 3, bo th  in a finite and an infinite volume. In the infinite volume, the 
coefficients of  the series we have explicitly calculated are of  equal sign for 
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each series. Under the assumption that this behavior continues to all orders 
in x, we identify the radius of convergence xc(2, a) with the singularity 
closest to the origin on the positive real axis, hence with the physical 
singularity at the phase transition, independently of the order of the 
transition. 

Well-developed methods are known for obtaining critical data from 
the high-order coefficients of high-temperature seriesJ'4" 2t) The critical point 
x,.(2, a) is identified by the ratio criterion applied to the coefficients 
aO,,)t~ tr). The best choice is the two-point susceptibility, because its series II ~'/% 

is available to the highest order. The obliged regression toward large It is 
done according to 

1(, c, .... ;,) 
q, , := ~ =~-,. +/t-~,,, +O(/ t  (40) 

with o) 2 > o9 ~ > O, and c ~ as fit parameter chosen according to the best ;(2/df  
fit. This procedure is eventually supplemented by a shift of the weak 
antiferromagnetic singularity at - x ,  to - 0 0 ,  an improved estimator fit, 
and other known techniques, such as Pad6 methods. We know that o9~ = 1 
for a leading pole or branch point singularity on the real axis, i.e., for 

;(2 ~-~(x , . - -x )  - r  as x ,~ x,. 

with 7 > 0 and ), :# 1, and o9 ] > 1 for 7 = I. For a second-order transition, an 
alternative way to determine the critical point is given by the smallest real 
solution of 

12X,.X~m(X,.) = 1 

as proposed in ref. 9. This condition is equivalent to the identification of 
the phase transition as a zero of the quadratic coefficient of the effective 
potential; cf. (32). It turns out to be the most convenient way to determine 
the radius of convergence leading to the highest precision in K,.. The lowest 
precision obtained in this way lies within 4--5 digits. Once K,. is determined 
we obtain the critical exponent ), from 

C-~ 
1 +l.t(tc,.qj,-- 1 ) = ? , + ~ + o ( p  .... 2) (41) 

with o93 and c 2 as fit parameters. In a similar way, the critical exponent v 
is obtained by replacing the series of Z2 by that of m~2; cf. (8). 
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A measurement of critical exponents like y, v, r/leads to a qualitative 
plot of the phase structure in the (2, ~) half-plane as shown in Fig. 2. The 
solid line represents the boundary 2 = 2,(cr) between the second- and first- 
order regions. To the left of this tricritical line the phase transition is of 
second order. Here, except for the origin 2 = cr = 0, we obtain one univer- 
sality class for every N with plateaus of critical exponents, with values of 
the N-component Heisenberg model (cf., e.g., ref. 9 for a recent list of those 
exponents). It is remarkable that this range considerably extends the 
"Lebowitz domain" 2 >/3a, where the action is convex and therefore 7' is 
not less than 1. c-'6~ In particular, it includes the full range of 2 <  -3tr .  In 
passing we mention that for 2 t> 0 the presence of a small nonvanishing O 6 
interaction, that is, a > 0, considerably accelerates the convergence of the 
high-temperature series compared to the case a = 0, i.e., the nonuniversal 
remainder of (40) becomes smaller. 

Except for the values of the critical exponents, the phase structure 
qualitatvely confirms the mean-field analysis of the last subsection. As the 
tricritical line 2 = 2,(a) is approached, the exponents 7' and v drop con- 
tinuously from their values in the Heisenberg models to the Gaussian 
values, where the tricritical line is crossed, and further to zero. The 
smooth interpolation between the different exponents is an artifact of the 
truncation of the power series expansions at high, but finite order in K. 

/ 
/ 

\ 
\ 

\ 

Ot 

/ 

ot ~ - - 3  

= 1  

O" 

Fig. 2. Qualitative plot of the phase structure of O(N) lattice models in three dimensions. 
The dashed curves give the lines 2 = ~ a  with ct = 1 and cr = - 3 .  The solid curve represents the 
tricritical line 2,(a). To the left of it the phase transition is of second-order, to the right of it, 
first order. 
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It was already pointed out in ref. 9 that various universality classes lead 
to smearing effects at finite order due to an "interference" of various 
universality domains. The most pronounced plateau structure is obtained 
for vr/, the critical exponent of the wave function renormalization con- 
stant ZR, (9). 

In Fig. 3 we show the results on the exponent vr/for the 0(4)  model, 
obtained from the 20th-order susceptibility series of 7,= and ll~, (5), for 
various a along the ray 2 = (1/2)cr. There is a well-established plateau at 
the left part of the plot corresponding to the universality class of the 
Heisenberg model. The plateau at the right part  is compatible with a range 
of first-order transitions; all exponents 7, v, q vanish within the error bars. 
Hence they are compatible with a finite correlation length at x,.. The 
stability of the extrapolated convergence radius x,. under a variation of the 
truncation of the series suggests that there is really a first-order transition 
rather than a mere crossover phenomenon. We would like to identify the 
left boundary of this plateau as the tricritical point. This gives us an 
estimate of about a, ~-9.0. The indicated errors in Fig. 3 are obtained as 
discussed in connection with (41). The smearing effect does not allow for 
a more precise location of the tricritical point. To get a clearer identifica- 
tion of the first-order transition region and a better localization of the 
tricritical point it is natural to perform a finite-size scaling analysis, which 
is the topic of the next section. 

0,03 

0.025 

0.02 

0.015 

| 
0.01 

2 4 sig 6ma 8 10 

Fig. 3. Critical exponent vJ 1 of the wave function renormalization constant ZR for the 3D 
O(4) model, obtained from the 20th-order susceptibility series for various a along the ray 
2 = (I/2)o. The tricritical point is at a, ~-9.0. The mean-field estimate gives o-, = 6.8. 
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4.3. Results of the  F in i te -S ize  Scal ing Analysis  

In Section 3 we formulated monotony criteria for response functions g 
in the scaling region. In absolute value, increase in volume implies a 
second-order transition, decrease in volume a first-order one. The response 
functions have to be calculated at some ~: close to, but not at the critical 
point h',. for two volumes. The value of 17 should be chosen sufficiently close 
to the (volume-dependent) transition point to satisfy the conditions of the 
monotony criteria, and sufficiently apart  from K,.(L) to allow the use of the 
truncated series representation. In our case in turned out that a choice of 
;~ = 0.98h',.(2, a, L; = c~ ) fulfills both restrictions for first- and second-order 
transitions. In general it might be safer if ~? is chosen either to the left or 
to the right of both peaks, i.e., in our case smaller than min(h',.(L;), h',(L~) ), 
in order for the conditions for the monotony criteria to apply. 

The volumes should be sufficiently large in lattice units to guarantee 
the applicability of the finite-size scaling ansatz for Z- Beyond this generic 
condition the following restrictions arise from the monotony criterion. The 
smaller one of the two volumes should satisfy L-" 1 ~ -  h-,. ] < 1 with x = 1/v 
or x = 3, which implies an upper bound on L for given ft. In practice we 
have chosen this L between 4 and 12. In the context of the H P E  the larger 
one of the two volumes may be set to infinity. The advantage of this choice 
is that in the first-order case, decrease in volume holds all over the scaling 
region. In Monte Carlo simulations the second volume is necessarily finite. 
In this case L should be large enough so that ~? lies outside the small 
neighborhood of h-,. where Z is increasing in the first-order case as well. The 
critical point x,.(2, a), which enters the inequalities on L and ~7, is deter- 
mined as the radius of convergence in the infinite volume as described 
above. 

We use the two-point susceptibility because its series is available to the 
highest order in x. For  given couplings 2 and cr 

M 
~ ( , ' 1 . 1 ) 1 . - :  _~ ~,,, L a; L ) =  ~ a~)'(,~, ~r; L) ~" (42) 

It = 0 

denotes the two-point susceptibility truncated at order M. With 

;(~,m(~?, 2, a;  L) 
r,vl(2, or; L)  := 1 ,.i,ml.-.. 2, a; oo) (43) 

Z 2  t tx,  

we know that r,_ ( - ; L ) >  0 for second-order and r~ (. ; L ) <  0 for first-order 
transitions if L lies within the bounds as explained above. The convergence 
of the series (42) as M ~  c~ ensures the same behavior for finite, but suf- 
ficiently large M. 
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Fig. 4. Dependence of the ratio r2o(,;., a ;  L), ~,s defined by (43), on L = (LI L2L3) I3, with the 
example of the E 2 model. Two  points of the phase space have been chosen. ( 1 ) ( + ) ,:, = 15/1.1 
and o-= 15. The transition is of  first order, r2~ j < 0 .  (2) ( []  ) ). = 3 and a = I. The transition is 
of second order, r2o > 0. 

Figure 4 shows an application of the monotony criteria to the one- 
component model. We have plotted the volume dependence of the ratio 
r,~.~(;,, a; L) for a truncation at order M =  20 and for various lattice sizes 
L=(L,L2L3) ~/3 at two points of the bare coupling constant space. One 
point is well inside the first-order region, the other one well inside the 
second-order part of the phase diagram; the different areas have been iden- 
tified by the infinite-volume series as discussed in the last subsection. 
Clearly the sign of r2o(.; L) is different in both regions of phase space. It 
is positive for the second-order transition and negative for the first-order 
transition. The approach to the infinite-volume limit where rM('; c r  0 
is fast. 

Next we want to demonstrate how one can utilize the finite-volume 
criteria with HPE to get a better localization of the tricritical region. Let 
us consider the 0(4) model and determine the behavior of the ratio rM 
along the line ~ = (1/2) a. From the infinite-volume analysis of the last sub- 
section we obtained a, ~ 9.0 as an estimate for the tricritical coupling a,. 

Since rM(~,a;L)>O for second-order and <0  for first-order tran- 
sitions, the tricritical point should be localized at the zero of rM()~, a; L) 
between these two ranges [with nonvanishing slope, i.e., &'M(a/2, a; L)/ 
0a :~ 0], suitably extrapolated to M, L --+ co. 

Figure 5 shows the ratio rM(a/2, a; L) as function of a for L = 4  and 
various M between 0 (corresponding to the mean-field approximation) 
and 20. The intersections of the curves with the r =  0 axis lie in the range 
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lattice. 

of 8~<a~<8.5. The zeros cL~,(L), defined by r,~I(aM(L)/2, crM(L);L)=O, 
depend on the order M at which the susceptibility series of Z_~ have been 
truncated and on the lattice size L. The dependence on L for fixed M of 
rM(2, a; L) is shown in Fig. 6. 
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Fig. 7. The solution aMILI of the equation rM(O'M(L)/2, aM(L); L ) = 0  for L=4, plotted 
against l/M, where M is the order of truncation of the suceptibility series. Regression is shown 
as a linear function of 1/M for M~> Mini. with M.,in = 14. 16, 18. 

Thus a final localization of the tricritical coupling a, needs an 
extrapolation in L and M to infinity. Clearly the extrapolations are not 
independent of each other. We should expect that a comparision of two 
ratios is sensible, i.e., 

rM( .; L) "~ rM,( .; L')  (44) 

if lattice sizes L, L' and truncations M, M' satisfy 

M M' 

L L' 
(45) 

The reason is that M/L is the maximal number of times a graph con- 
tributing to the series of X~MI(.;L) can wind around the volume. Then 
Eq. (45) ensures that the remaining L dependence becomes independent of 
M for sufficiently large M. 

Figure 7 shows the data aM(L) obtained on a 43-lattice (L = 4) and for 
11 ~<M~<20 as a function of 1/M. The curves show the regression 

t~(Mmin)  
crM(4) = o ' , ( M m i n ,  L = 4 )  + - -  

M 
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Within the error bars, the data are on a straight line, thus confirming the assumptions made 
in connection with Eqs. (44) and (45). Linear regression in I/M,.~. gives the tricritical point. 

as obtained for Mini . <~ M <~ 20 and for Mm~. = 14, 16, 18. In Fig. 8 we show 
the second regression for the resulting a,(M,,~,L/4, L) in 1/Mm~. for 
L = 4 ,  6, 

a, Mmi,,'~,L :O't'qt-~min 

leading to the final prediction of a,. We have scaled the adjusted Mm~,, 
according to (45). Note that both data sets, on the 43- and on the 
6Llattice, fall on the same straight line within the error bars. We obtain 

a, =9.454(49) (46) 

In passing we remark that the accuracy of a, has been increased by at 
least one older of magnitude compared to the infinite-volume analysis 
(Fig. 3). It should be noticed that the volume independence of X2 in 
the scaling region of the tricritical point just confirms the validity of a 
mean-field analysis of tricritical exponents. A mean-field analysis is volume 
independent by construction. The expected volume independence of X2 is 
confirmed within the error bars. The validity of the mean-field analysis was 
also found by Baker and Johnson (27) in the large-coupling limit of the 
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Blume-Capel model in four dimensions and by Hara et al. ~ for dimen- 
sions larger than four. 

In the remainder of this section we discuss the volume dependence of 
the radius of convergence and of the effective potential. 

Shift  and Scaling of  K,.(,~, O'; L). We define x,.(2, e; L) in the finite 
and infinite volume as the radius of convergence of the susceptibility series, 
in particular of ;(2, which is known including the 20th order. Some data for 
K,.(L) are listed in Table II for the three-dimensional O(1) and 0(4) 
models. The couplings (2, tr) for each N (N = 1, 4) have been chosen deep 
in the first-order transition region. 

From a finite-size scaling analysis one expects (cf. Section 3) that the 
data should fit with a regression in L according to 

In Ix,.( .; L)-h- , . (-;  ~ )l -~ In c -  y r l n  L 

for large L, with some constant c and a critical exponent YT. For the L 
model we obtain in the first-order transition region ( 2 =  15/1.1, a =  15.0) 
according to Table II 

In c = 4.57(57), y r =  6.21(32) 

with z2/df=O.025. Thus the scaling behavior is consistent with YT----- 
2D = 6. It confirms the behavior which has been predicted for the shift of 
the critical coupling determined as the maximum of the susceptibility in a 

Table II. Radius of Convergence Kc(L) of the HPE 
Series for the First-Order Region" 

x,.(L) 

7/2 0(4)  
L ( 2 =  13.64, a =  15.0) 12 =6.0,  o '=  12.0) 

0.51047( I ) 0.84462(10) 
4 0.49381 0.7953 I 
6 0.50886 0.83851 
8 0.51025 0.84416 

I 0 0.51047 0.84436 
12 0.51047 0.84447 

" It is determined from the two-point susceptibility series, as 
described in Section 4.2. Data are given for the 3D Z2 and 0(4)  
models lbr various volumes L 3. 
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class of models which cover the 7/2 modelJ 2~ Note that it is in disagree- 
ment with the Gaussian two-peak model I ~8~ predicting a leading finite-size 
correction proportional to L - o ,  which one might have expected. 

The same scaling behavior is found for the 0(4) model in the first- 
order transition region. Here we get (Table II) 

In c = 4.57(120), y r =  5.55(59) 

Thus a leading correction proportional to L -s lies clearly outside the 
error bars. This result is remarkable, because the 0(4) model (which is a 
Heisenberg model in the large-coupling limit) is not covered by the analysis 
of Borgs et al/t9. 2o~ Hence the vanishing of the coefficient of the linear term 
in a large-volume expansion of the susceptibilities in powers of 1/L 3 seems 
to be a universal feature of a large class of models. 

A measurement of the scaling behavior of x,.(L) in the second-order 
region of the 0(4) model was not conclusive, because the shift of x,. occurs 
in the fourth or fifth digits, hence the finite-size effect is hidden in the error. 
In the second-order region of the 7/2 model we measure a scaling which is 
best fitted by an ansatz (cf. Table III) 

x,.(.;L)=K,.(.; ~ ) +  
r 

L . I ' T  

with Yr = 2/v, and 

In c =  -2.25(129),  ),7-=2.83(59) 

with x2/df=O.1. From a renormalization group analysis one expects a 
leading scaling correction proportional to L-~/". Also here the finite-size 
effect is not large compared to the error in K,. ; thus the disagreement with 

Table III. Radius of Convergence 
Kc(L ) of the HPE Series for the 
Second-Order Region in the ~a 

Model for Various Volumes L 3 

K,.[ L) 
L (2=3 .0 ,  a =  1.0) 

0.17316(4) 
6 0.17393 
8 0.17339 

10 0.17327 
12 0.17327 
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an L-u , .  behavior may be due to the errors in ic,. and the uncertainty in 
the involved extrapolations. 

We conclude the discussion of tee(L) with a conjecture concerning the 
monotony behavior. 

Monotony in K,.(L). The results of Table II for K,.(L) exhibit a further 
characteristic distinction between first- and second-order transitions. Since 
we are not aware of a general proof, we leave it as a conjecture. 

C o n j e c t u r e .  The convergence radius K,.(L) of the series expansions 
is monotonically decreasing with L for second-order transitions, and 
monotonically increasing for first-order transitions. 

The Effective Potent~a~ as Function of  L. Similarly we have 
measured V.~r, Eq. 132), for two points well inside the supposed first- and 
second-order transition regions of the 0(4) model (2=6.0 ,  a =  12.0 and 
2 = 0.90, a = 1.0, respectively). The - ~r~ g2,, entering Eq. (32) have been 
evaluated to 16th order in K for n =  1, 2, 3 in a finite and an infinite 
volume. For the second-order point ), = 0.9-6, (y = 1.0 and for volumes L 3 
with L = 4 6, and oo, V,n- is convex in the symmetric phase up to a resolu- 
tion of 10- '~. 

In the first-order case (Fig. 9) V~. is nonconvex in the symmetric 
phase with a barrier height decreasing with increasing L. The three curves 

0.003 
. . . . .  f i  

w , .  ~i 

0.0025 

0.002 

0.0015 

0.001 

0.0005 

0 ............ 

| i ' I i Phi 
0 0.05 0 1 0.15 0 2 0.25 0.3 

Fig. 9. Voltmae dependence of the effective potential I/en.(@) on lattices with varying size L ~. 
Tile barrier height decreases with L. The curves are obtained for s = 4, 6, ~,. The parameters 
are 2=6 .0 ,  ei= 12.0 in the 3D OI41 model. 
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correspond to a 4 3, 6 3, and 003 lattice, respectively. Note that the non- 
convex shape, which is even seen for the oo3 lattice (lowest barrier in 
Fig. 9), must be attributed to the approximation scheme, i.e., to the trunca- 
tion at order M =  16. (As mentioned above, the truncation of the series 
expansion acts similarly to a finite-volume cutoff. The finite volume leads 
to a nonconvex shape only in the first-order case. Thus it is not surprising 
that we find a convex shape in the symmetric phase for all volumes in the 
second-order case, in spite of the same truncation in M.) 

The coexistence of minima leading to the same value of V~, r defines a 
critical coupling ~,.(L) which need not agree with the finite-volume con- 
vergence radius x,.(L) unless the truncated expansions of V~tr(~) in ~ and 

~ IP I  o~;42,, in x are extrapolated to infinity. For  parameters chosen as in Fig. 9 
we find if,.(4) = 0.8311, if,.(6) = 0.8475, and t?,.(co) = 0.8488, in contrast to 
x,.(4) = 0.79531, x,.(6)=0.83851, and x,.(oo)=0.84462 (cf. Table II), deter- 
mined as the radius of convergence of the series expansions, extrapolated 
to infinite M. 

Tricritical Parameters from V~n.. Vanishing coefficients of the ~2 and 
�9 4-terms associated with a qualitative change in the shape of VCn-provide 
a further possibility for localizing the tricritical couplings. The analytical 
dependence of the coefficients on 2 and a is rather indirect. It is easier to 
determine 2,, a, by the first occurrence of a nonconvex shape of V~n- in the 
symmetric phase, coming from the second-order transition region. The 
highest order, which is so far available for the six-point susceptibility ~ t rl Z 6  , 

entering the ~6-coefficient of V~n-, is 16. The number of contributing graphs 
to order 16 is comparable to the number of graphs contributing to the two- 
point susceptibility to order 20 and the four-point susceptibility to order 
18. An inclusion of higher powers in ~, say ~ ,  ~t~ would further 
reduce the order in h" which is tractable. Thus we refrain from further 
extrapolations, but give bounds on a, ,  derived from V~n-(~b) to O(tct6). 
They are 

9.75 ~< a, ~< 10.0 (47) 

The resolution in V~n-, within which no nonconvex shape was seen up to 
a=9 .75 ,  was 10 -7. Compared to the more reliable result of Eq. (46), the 
evaluation of Pen-seems to lead to an upper bound on a,,  given by 
Eq. (47). 

5. S U M M A R Y  A N D  OUTLOOK 

In this paper we have generalized hopping parameter expansions from 
an infinite to a finite volume. The combination of performing the expansions 
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in a finite volume and to a high (20th) order in the expansion parameter 
has turned out as a useful computational technique to approach the critical 
region from the symmetric phase and, in addition, to characterize the type 
of transition. First- and second-order transitions have been distinguished 
by various criteria: the monotony criterion referring to the L dependence 
of response functions (here illustrated on order parameter susceptibilities), 
the scaling and monotony of the radius of convergence K,.(L) as function 
of the linear lattice size L, and the effective potential as function of L. In 
particular, it is the different L dependence of the order parameter suscep- 
tibility for first- and second-order transitions in the 
scaling region (close to but not at the transition point) which allows us to 
localize tricritical points. The monotony criterion can be applied to Monte 
Carlo simulations as well; the involved two volumes should be sufficiently 
large, but both may be finite. 

We have applied these methods to renormalizable O(N) models in 
three dimensions, The plateau structure in the critical exponent vq in the 
infinite volume has revealed two universality classes belonging to an O(N)- 
Heisenberg model and to a Gaussian model. Apart from the "trivial" 
Gaussian behavior at vanishing four- and six-point couplings, we get 
Gaussian exponents along a tricritical line separating first-and second- 
order domains. The existence of the first-order domain and the tricritical 
line is based on the presence of the q~6 self-interaction. The O(N) symmetry 
alone does not determine the critical behavior. 

Several extensions are at hand. The first one is from three dimensions 
to field theories in four dimensions at finite temperature. For  a ~ 4 +  ~6_ 
type theory in four dimensions at finite temperature we expect qualitatively 
the same infrared behavior and phase structure as for three dimensions, but 
different values for the critical couplings. A check of the supposed dimen- 
sional reduction from four to three dimensions is of particular interest in 
connection with the electroweak phase transition, q~6 terms in the dimen- 
sionally reduced SU(2)-Higgs model are usually argued to be irrelevant 
even at the transition to the spontaneously broken phase, and hence 
dropped. ~291 In our extension of the previous investigations we will keep the 
~b 6 term in a 4D effective scalar theory at finite temperature, which is 
derived from the underlying SU(2)-Higgs model by integrating out the 
gauge field degrees of freedom. The phase structure of the effective scalar 
theory will then be studied in a finite and infinite volume. Hopping param- 
eter expansions are supposed to work the better the smaller is K, thus the 
larger are the Higgs masses. Hence this investigation complements the 
range of Higgs masses which has been available in recent Monte Carlo 
simulations. 13~ One of our aims is to find the critical Higgs mass above 
which the electroweak phase transition ceases to exist. (In case the physical 
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Higgs mass lies above the critical Higgs mass, it is bad news for an 
explanation of the observed baryon number asymmetry in the universe. 
The necessary ingredient for an out-of-equilibrium situation can no longer 
be provided by the electroweak transition if the "transition" turns out to be 
truly a smooth crossover phenomenon.) 

A further application of our computational tools are (tri)critical 
phenomena in statistical physics. The order of the transition in a super- 
conductor of type II has been recently under debate (refs. 31 and 32 and 
references therein). The existence of a tricritical point for a suitable 
Ginzburg-Landau parameter has been conjectured] 33~ but a proof of its 
existence is still outstanding. Work in these directions is in progress. 

A P P E N D I X  A. L A R G E - C O U P L I N G  L I M I T  OF O(N) 
LATTICE M O D E L S  

For N~> 1, on a D-dimensional hypercubic lattice A, we consider the 
partition function 

Z = f ~q5 exp[ - S(r 

with corresponding expectation values 

if ( P ) x . , = ~  @ ~ P ( ~ ) e x p [ - S ( c b ) ]  (A1) 

where 

N ~  = [ I  dX~x 
.\" E / |  

and 

s(#)=-_,'- Y, v.,:,.e,..e,.+Y,&e.,./ 
A" : ~  . , '  .x" 

g(~)  = ~2 + 2 ( ~ 2 -  1)2 + a ( ~  2 - 1) 3 

Measure and action are globally O(N)-invariant. The observable P should 
be appropriately bounded so that the integrals exist. Fields at different 
lattice sites x and y interact by the hopping coupling v.,..,., which is assumed 
to obey the following conditions: 
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v , .y  = v,..,. = v ( x  - -  y )  

v ( 0 ) = 0  

V.x..v < O 0  

. r E  . I  

(A2) 

y '  v,.,,( ~.,. - qs.,.)-" >~ 0 
X, ,r  ~ . I 

As an example,  these condit ions are satisfied for the pure  nearest  ne ighbor  
interaction,  where 

/ )  I 

v,.,.=2t," ~ (0,. ,.+~+~.,...,. t~) 
/* = 0 

(A3) 

with/3 denot ing the unit vector  in t he / t  direction. We consider (A1) in the 
limit cr ~ cry with 2 = r and r a fixed real number ,  i.e., 

( P ) ~ =  lim ( P )  . . . .  

for 

S ( ~ ) =  ~02 + ty(~ 2 -  1)-' ( q52-  1 +cr (A4) 

The hopp ing  paramete rs  v,.y are considered as fixed. We have to select all 
field configurat ions that  minimize the act ion in this limit. It is convenient  
to parametr ize  the fields according to 

�9 ,. = u,. v,., u,. ~ S,v i (the N -  1 sphere), v,. i> 0 

Lemma A.1.  As a--+ era we get the following behavior  of  expecta-  
tion values P as dependent  on ~: 

For  ~ > 1 

g(L,) = - �89 Z ~.,:,.ux. u,. 
: ' : .  y ~ . f 



Convergent Series Expansions in a Finite Volume 793 

For  c~ = 1 

. V  E . | t ,  a = , [ ~ - I 

x P(uv) exp[  - S ( u ,  v)] 

Y. E v,.v.,v.,.,,.,.,. 
+v E .If A', I '  E / l  

For  - 3  <m < 1 

< P ) ~ = P ( O )  

For  e -- - 3 

.x- �9 + I c x . I A ' , V  I 

x P ( x / ~  uv) exp[  - S ( u ,  v)] 

S(u, v)= ~, 3v~. - 3  Z v,..,.v,.v.,.u.,..u.,. 
.'r E / I  .V. y E + | 

For  0~< - 3  

( P ) - - = "  t/~ l~.~ (Is. d f 2 A ' - , ( u . , - ) ) P ( ( 1 - - 2 @ ) u ) e x p [  - ~ ( u )  ] 

~(u) = -- ~ Y' 1 - v.,..,, u.,.. u,. 
. v+  ) '  E . 1 

The ,..~ are positive normal izat ion factors independent  of  P such that 
( 1 )~ = 1 ; ds x ~ is the s tandard measure on the sphere. 

For  ~ >  1 and ~ < - 3  we obtain the O(N) Heisenberg model  (Ising 
model for N =  1). For  - 3  < a < 1 the lattice model becomes completely 
decoupled. At the boundary  points co= 1 and a = - 3  the results are 
"diluted" O(.N) models, i.e., O(N) models with additional occupat ion 
number  variables v,. e { 0, 1 }. 

Outline o f  the ProoL The properties (A2) ensure that the mini- 
mizing field configurations of  the action S ( ~ )  are translation-invariant.  
Thus it is sufficient to determine the minima of 

F((I))=((I92--1)2((I92-1+o~), ~ R  x 
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for the various values of ~. Finally the saddle-point expansion for the 
different cases yields the lemma. 

An alternative way to study the large-coupling limit is to perform it 
termwise in the H P E  series of correlation functions. We specialize to the 
nearest neighbor interaction (A3). The only way the coupling constants 2 
and a enter the linked cluster expansion is via the connected one-point 
vertex couplings ~'_;,,(2, a), defined in Eq. (11). The connected one-point 
vertex couplings are related to the full one-point couplings ~2,, defined by 

g~_,, = ~ d'Vq~ qb~" exp( - 5~(~)) 
dXr , e x p ( -  g(q~)) (A5) 

by the identity (12). At any finite order I, the coefficient of h -r is a 
polynomial in the ~'_;,,, hence in the 02,,. Invoking a saddle-point expansion 
again, we obtain the following result. 

L e m m a  A.2. Let 2 = c~a with a > 0, - ~ < ~ < or. Define for non- 
negative integers N, k 

F( N/2 ) 
,~U. ~. = (2k- -  1)!! 

F( N/2 + k) 2 k 

As cr ~ cr.) we get the following results for every k > 0: 
For cz > 1 

0_~, = J N .  ,. + O ( a  - i,'2) 

For c~ = 1 

/~2k ~ ~ " N ,  k " 

For - 3  < ~  < 1 

{ e - ~  +O(cr  12) for N = I  

l + O ( a  -1'2) for N~>2 

For cr = - 3 

( 2 k -  1)!!  1 
2 k [ ( 3 _ 2 0 0 a ] k [  l + O ( a - ' / z ) ]  

. + O(a -t/2) for N =  1 

( 3 k + O ( a  - t - ' )  for N>~2 
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For  0~ < - 3 

O2k=~V.k 1 -  +O(a  -':2) 

For  e > 1 the vertices are identical with those of the O(N) Heisenberg 
models. In the range - 3  < e < 1 they agree with the vertices of a purely 
Gaussian model with ultralocal action 

~(qs) = ( 3  - 2 ~ )  ac/'z 

leading to complete disorder as a ~ ov for every finite x. For 0~ < - 3  we 
obtain the Heisenberg model again, as can be seen as follows. For any 
fl > 0, rescaling of the vertices 

O2k "~  ~ 2 k u 2 k  (A6) 

oc  t ~ 2 k  o c  . implies a corresponding rescaling of the connected vertices, v2k ~ p v2k, cf. 
(12). In turn, elementary graph theory shows that all susceptibilities change 
according to X,(h)--, fl"X,(flzx). Hence, universality classes are invariant 
under (A6). Furthermore, we see that, for N~> 2, the boundary points 0~ = 1 
and ~ = - 3  belong to the Heisenberg class as well. A remnant of the 
occupation number  variables is only seen in the case of N =  1, which is a 
remarkable exception and needs further study. 

Thermodynamic quantities like Z and the critical coupling x,. can be 
directly determined in these limiting models. Alternatively, one may start 
with the original action (A4) at finite ~, calculate Z and ~c,. in the HPE, and 
take the large-coupling limit last. Our  results indicate that both limits 
commute.  

APPENDIX B. EXAMPLE OF SERIES EXPANSIONS FOR THE 
TWO-POINT SUSCEPTIBILITY 

In Tables IV and V we list the expansion coefficients of the two-point 
susceptibility Z2 of (5), written as 

Z,,,(K, 2, a; L) = ~, b/,(2, a;  L)(2K)" 
/ t >1 0 

(BI) 

for p = 0 ..... 20 for the three-dimensional 0(4)  model tbr two pairs of four- 
and six-point couplings (2, a) and various volumes L 3. The values of the 
coupling constants are chosen somewhat above and below the tricritical 
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Table IV. Series Coefficients of the Two-Point  Susceptibility X2 as Defined in 
(54) for Various Lattice Volumes L 3, for the 0 ( 4 )  Model (1 ) - (2 ) ,  at Coupling 

Constants 0 = 5 . 0  and h = a / 2 = 2 . 5 "  

L = 4  L = 6  L = 8  L=~z 

b, 1.767811187e-01 1.767811187e-01 1.767811187e-01 1.767811187e-01 
h I 1.875093835e-01 1.875093835e-01 1.875093835e-01 1.875093835e-01 
b~ 1.900125602e-01 1.900125602e-01 1.900125602e -01 1.900125602e-01 
I~ 1.922690391e-01 1.922690391e-01 1.922690391e-01 1.922690391e-01 
b 4 1.892950458e-01 1.895724394e-01 1.895724394e-01 1.895724394e-01 
b s 1.859873544e-01 1.865626788e-01 1.865626788e-01 1.865626788e -01 
b6 1.798987466e-01 1.813634027e-01 1.813720717e-01 1.813720717e-01 
b 7 1.736631729e-01 1.760492597e-01 1.760672395e-01 1.760672395e-01 
b~ 1.655675951e-01 1.696450984e-01 1.697046433e-01 1.697049142e-01 
b~ 1.574955741e-01 1.632781592e-01 1.63381291%-01 1.633818538e-01 
b,~ 1.480384104e-01 1.56347487e-01 1.565621324e-01 1.565645676e-01 
bll 1.387554403e-01 1.49555404e-01 1.498846763e-01 1.498890906e-01 
hi2 1.284275569e-01 1.42474718e-01 1.430203492e-01 1.430317221e-01 
bl~ 1.184138401e-01 1.35597992e-01 1.363618800e-01 1.363804958e-01 
hi4 1.076646157e-01 1.28586645e-01 1.296905927e--01 1.297270665e-01 
b~5 9.736049025e-02 1.21820599e-01 1.232616678e -01 1.233164494e-01 
hi6 8.66264693%-02 1.15013182e-01 1.169170337e-01 1.170075094e-01 
hi7 7.64555668%-02 1.08476663e-01 1.108321311e-01 1.10958663%-01 
bl~ 6.615059713e-02 1.01960177e-01 1.048837366e-01 1.050700011e-01 
b~ 5.650721931e-02 9.57296188e-02 9.919968582e-02 9.944545683e-02 
b2, 4.69669183%-02 8.95442302e-02 9.366035412e-02 9.399383161e-02 

"These couplings belong to the second-order transition region. 

point along the line 2 = a/2 in bare coupling space. At 2 = 2.5 the model 
has a second-order transition, whereas at 2 = 5.0 the transition is of first 
order. 

For  every/~, the coefficient b~,(2, a; L) is a polynomial in the coupling 
~_,,,(2, a)'s defined in (13). Hence it is a real number. Questions of con- 
vergence, conditioning, etc. of the series are the same as in the case of a lat- 
tice unbounded in all directions. A convenient way to avoid severe roundoff 
errors is to combine graphs into further equivalence classes, so-called 
vertex structures. ~8~ They are considerably less in number and smaller in 
size than the objects related to graphs. Therefore the errors induced by 
alternating signs of the 62,,(2, a)" and the roundoff errors of the attached 
rational weight factors do not accumulate beyond the numerical precision 
to which the integrals (13) are evaluated. The integration has been per- 
formed up to 12 digits. Thus the coefticents bt, of the tables are given within 
10 digits. 
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Table V. As in Table IV, but at Coupling Constants a =  10.0 and A = ~ / 2 = 5 . 0 "  

L = 4  L = 6  L = 8  L = ~  

b. 1.023127641e--01 1.023127641e--01 1.023127641e-01 1.023127641e--01 
b t 6.280741021e-02 6.280741021e--02 6.280741021e--02 6.280741021e--02 
b 2 4.448843062e-02 4.448843062e-02 4.448843062e-02 4.448843062e-02 
b 3 3.113896834e-02 3.113896834e-02 3.113896834e-02 3,113896834e-02 
b~ 2.196504376e-02 2.190294365e-02 2.190294365e-02 2.190294365e-02 
b 5 1.544217140e-02 1.536006216e-02 1.536006216e-02 1.536006216e-02 
b6 1.088285598e-02 1.076585896e-02 1.076520890e-02 1.076520890e-02 
b7 7.657062683e-03 7.537225091e-03 7.536365580e-03 7.536365580e-03 
bs 5.398747329e-03 5.272544257e-03 5.270872836e-03 5.270866032e-03 
b~ 3.802721557e-03 3.686832508e-03 3.684987419e-03 3.684978422e-03 
hr, 2.683949486e-03 2.576214776e-03 2.573803375e-03 2.573779992e-03 
b~t 1.892949088e-03 1.799916511e-03 1.797512184e-03 1.797485086e-03 
h~2 1.337653766e-03 1.256926602e-03 1.254314388e-03 1.254270283e-03 
h~ 9.446796670e - 0 4  8.777073102e-04 8.752769968e-04 8.752301854e-04 
bj4 6.683322686e - 0 4  6.127194998e - 0 4  6.103503216e--04 6.102899361e-04 
b~ 4.72572388%-04 4.277289504e-04 4.256333206e-04 4.255733755e-04 
b~ 3.346632114e-04 2.985492698e-04 2.966459680e-04 2.965788682e-04 
hi7 2.368883466e-04 2.083823901e-04 2.067618926e-04 2.066986937e-04 
b~x 1.678883648e-04 1.454448101e-04 1.440438674e-04 1.439795485e-04 
bt~ 1.189384952e-04 1.015154745e-04 1.003574216e-04 1.002993328e-04 
b2o 8.435105473e-05 7.086546783e-05 6.989953824e-05 6.98442866%-05 

"These coupling constants belong to the first-order transition region. 

To compute the coefficents b,  for other choices of couplings, it is not 
necessary to recalculate the contributions of  all single graphs, but just the 
~2,,(2, a)", once the vertex structures are given. For details we refer to ref. 8. 
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